This exercise also gives maximums: y < 170 and x < 200. Also, in these cases, I can’t ignore these other constraints, since I already have that y > 80 and x > 100. The minimum requirement for shipping also gives me 200, x + y, so in other words – x + 200 < y. The optimization equation of 2x + 5y = R will be my Revenue Relation. So the system is entirely:
R = –2x + 5y, subject to:
This exercise also gives maximums: y < 170 and x < 200. Also, in these cases, I can’t ignore these other constraints, since I already have that y > 80 and x > 100. The minimum requirement for shipping also gives me 200, x + y, so in other words – x + 200 < y. The optimization equation of 2x + 5y = R will be my Revenue Relation. So the system is entirely:R = –2x + 5y, subject to:
正在翻譯中..
![](//zhcntimg.ilovetranslation.com/pic/loading_3.gif?v=b9814dd30c1d7c59_8619)
Latihan ini juga memberikan maksimal: <y . 170 dan x <200 Juga, dalam kes-kes ini, saya tidak boleh mengabaikan kekangan lain, kerana saya sudah mempunyai y> 80 dan x> 100. Keperluan minimum untuk penghantaran juga memberikan saya 200, X + Y, SO dalam erti kata lain - 200 + X <Y di The Optimization Persamaan 5y = 2x + R & lt Hasil Berhubung Jadi saya akan sepenuhnya di The System: .. R & lt = -2x + 5y, Subjek kepada:
正在翻譯中..
![](//zhcntimg.ilovetranslation.com/pic/loading_3.gif?v=b9814dd30c1d7c59_8619)