本设计采用快速傅里叶变换(FFT)来计算配电网的各项参数。利用快速傅里叶变换(FFT)进行谐波分析,得到待测电压电流的各次谐波的幅值和相角,的英文翻譯

本设计采用快速傅里叶变换(FFT)来计算配电网的各项参数。利用快速傅里

本设计采用快速傅里叶变换(FFT)来计算配电网的各项参数。利用快速傅里叶变换(FFT)进行谐波分析,得到待测电压电流的各次谐波的幅值和相角,进而计算出配电网的电压、电流、功率、功率因数等参数。因此本章首先在第一节介绍快速傅里叶变换的有关内容,然后再介绍基于傅里叶变换的配电网各项参数的计算公式。
2.1 快速傅里叶变换
作为一种重要的谐波分析方法,快速傅里叶变换的目的就是要求出待测信号的各次谐波的相角和幅值,然后根据各次谐波的幅值和相角计算出配电网的各项参数。
2.2.1 FFT算法简介
FFT,即快速傅里叶变换,其目的主要是为了进行谐波分析,以求的各次谐波的相角和幅值。早期,由于离散傅里叶变换巨大的运算量,使得傅里叶变换迟迟无法用来解决实际生活中的问题。但随着FFT算法的出现,傅利叶变换的应用领域开始变的越来越广泛。经过多年来的创新和发展,该方法在理论和实现上都已经很完备了。但在FFT的使用过程中应注意,如果波形中含有谐波,在进行FFT变换可能会产生频谱混叠现象,影响最终结果的精度。要解决这个问题,就必须使数据在采样时满足奈奎斯特采样定理的要求,即数据的采样频率大于待测信号所含最高次谐波频率的两倍。
2.2.2 基于FFT的谐波分析的实现
作为谐波分析中应用最为广泛的一种方法,使用快速傅里叶变换来计算各次谐波的幅值和相角,具有运算简单,结果准确,使用方便等优点。其具体实现如下。
(1)数据采集
在进行FFT变换前,必须将模拟信号变成离散的数字信号,这就是数据采集。按照FFT的计算要求,在数据采集时,在一个周期内采集的数据点N满足如下条件: ,其中N和M均为正整数。
(2)数据重新排序
采集得到数据必须进行逆序相加计算,将原始数据序列进行重新排序,才能进行FFT计算,。假定原数据序列是{x(i)|i=0,1,2…,N-1},新序列为{X(i)|i=0,1,2…,N-1},则二者关系如式(2-1)给出
0/5000
原始語言: -
目標語言: -
結果 (英文) 1: [復制]
復制成功!
This design uses the fast Fourier transform (FFT) to calculate the parameters of the distribution network. Using the fast Fourier transform (FFT) harmonic analysis, get measured voltage and current harmonics amplitude and phase angle, and then calculated the distribution of voltage, current, power, power factor and other parameters. Therefore, this chapter in the first section describes the contents of the fast Fourier transform, then the parameters of distribution network based on Fourier transform formula.2.1 fast Fourier transformAs an important method of harmonic analysis, fast Fourier transform is requested of the harmonics of the signal to be measured phase angle and amplitude and harmonics amplitude and phase angle to calculate the parameters of the distribution network.2.2.1 Introduction to FFT algorithm FFT, fast Fourier transform, which is mainly designed to harmonic analysis, phase angle and amplitude of the harmonics. Early due to huge computational discrete Fourier transform, Fourier transform cannot be used to solve real-life problems. But with the emergence of FFT algorithms, Fourier transform applications are becoming more and more widely. After many years of innovation and development, in both the theory and implementation of this method is very complete. But FFT should be paid attention to in the use process, if the wave contains harmonics, FFT transform may result in aliasing phenomena affect the accuracy of the final result. To resolve this issue, you must make the data satisfies the Nyquist sampling theorem in the sampling requirements, sampling frequency is greater than that contained in the signal to be measured twice times the maximum harmonic frequency.2.2.2 implementation based on FFT of harmonic analysisAs the most widely used method of harmonic analysis, using the fast Fourier transform to compute the harmonic amplitude and phase, operation simple, accurate, easy to use and so on. Its implementation is as follows.(1) data collectionIn front of the FFT transforms, analog signal into a discrete digital signal must be, this is data acquisition. According to the FFT calculations are required, at the time of data collection, data collected in a period of n satisfies the following conditions: n, where n and m are positive integers.(2) data is reorderingThe data collected must be the reversal and addition computation, to reorder the sequence of the original data in order for FFT calculation. Assumes that the original data is {x (I) |i=0,1,2...,N-1}, new sequence is {x (I) |i=0,1,2...,N-1}, relation (2-1)
正在翻譯中..
結果 (英文) 3:[復制]
復制成功!
The design uses the fast Fu Liye transform (FFT) to calculate the parameters of the distribution network. Using fast Fourier transform (FFT) for harmonic analysis, the amplitude and phase of the voltage and current of each harmonic can be acquired, and then calculate the parameters of the distribution network voltage, current, power, power factor, etc.. So this chapter first introduces the contents of the fast Fu Liye transformation in the first section, and then introduces the calculation formula of the distribution network parameters based on Fu Liye transform..
2.1 fast Fourier transform
as a kind of important harmonic analysis method, fast Fourier transform is the phase angle and amplitude of the signal to be measured is the harmonic.Then according to the amplitude and phase of each harmonic is calculated on the basis of the parameters of the distribution network.
2.2.1 FFT algorithm brief
FFT, fast Fourier transform, its purpose is mainly for harmonic analysis, in order to the harmonic amplitude and phase angle. In the early time, because of the huge amount of computation of the discrete Fu Liye transform, Fu Liye transform could not be used to solve the problem in real life.. However, with the appearance of FFT algorithm, the application of Fu Liye transform becomes more and more extensive.. After many years of innovation and development, the method has been well in theory and implementation.. But in the course of the use of FFT should be noted,If the waveform contains the harmonics, the FFT transformation may produce the aliasing phenomenon and affect the accuracy of the final results.. In order to solve this problem, we must satisfy the requirement of the Nyquist sampling theorem when sampling, that is, the sampling frequency of the data is two times higher than the high harmonic frequency of the signal to be measured..
2.2.2 based on FFT harmonic analysis implement
as harmonic analysis in the application of the most widely used method, using fast Fourier transform to calculate the amplitude and phase of each harmonic, with simple operation, accurate and convenient advantages. Its concrete realization is as follows.
(1) data acquisition
before the FFT transform,It is necessary to turn analog signals into discrete digital signals, which is data acquisition.. According to the calculation of FFT, the data points collected in a period of time can meet the following conditions: M and N are positive integers..
(2) data reordering
acquisition data must be the reversal and addition calculation, the original data sequence for reordering to FFT. It is assumed that the original data sequence is {x (I) |i=0,1,2... , N-1}, the new sequence is {X (I) |i=0,1,2... N-1}, then the relationship between the two (2-1) given
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: